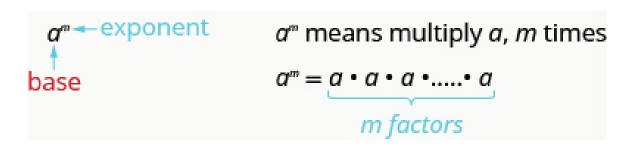

INTERMEDIATE ALGEBRA

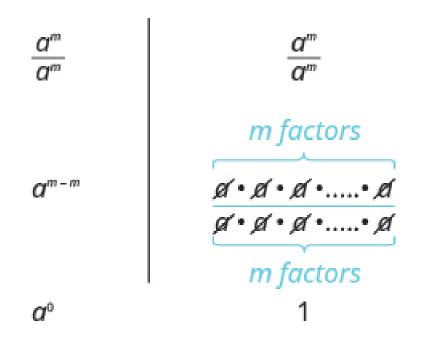
Chapter 5 POLYNOMIALS AND POLYNOMIAL FUNCTIONS

PowerPoint Image Slideshow

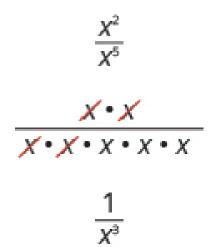
There are many different kinds of coins in circulation, but a new type of coin exists only in the virtual world. It is the bitcoin.



Monomials	14	8ab ²	$-9x^3y^3$	-13a
Degree	0	3	8	1
Binomial	h + 7	7 <i>b</i> ² – 3 <i>b</i>	<i>x²y²</i> – 25	4n ³ - 8n ²
Degree of each term	1 0	2 1	4 0	з 2
Degree of <mark>polynomial</mark>	1	2	4	3
Trinomial	$x^2 - 12x + 27$	$9a^2 + 6ab + b^2$	6 <i>m</i> ⁴ – <i>m</i> ³ <i>n</i> ² + 8 <i>mn</i> ⁵	<i>z</i> ⁴ + 3 <i>z</i> ² - 1
Degree of each term	2 1 0	2 2 2	4 5 6	4 2 0
Degree of <mark>polynomial</mark>	2	2	6	4
Polynomial	<i>y</i> – 1	3 <i>y²</i> – 2 <i>y</i> – 5	$4x^4 + x^3 + 8x^2 - 9x + 1$	
Degree of each term	1 0	2 1 0	4 3 2 1 0	
Degree of polynomial	1	2	4	



$$a^{m} = \underbrace{a \cdot a \cdot a \cdot \dots \cdot a}_{m \ factors}$$
 $(-9)^{5} = \underbrace{(-9)(-9)(-9)(-9)(-9)(-9)}_{5 \ factors}$



$$4000. = 4 \times 10^3$$

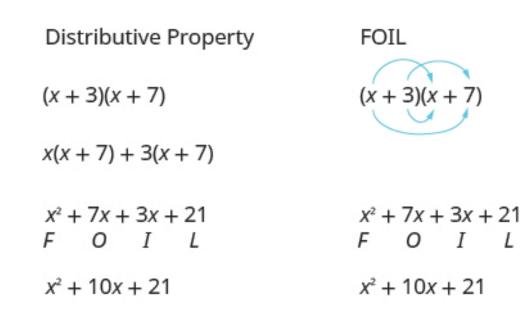
Moved the decimal point 3 places to the left.

 $0.004 = 4 \times 10^{-3}$

Moved the decimal point 3 places to the right.

9.12 × 10⁴ = 91,200

9.12___× 10⁴ = 91,200


Move the decimal point 4 places to the right.

 $9.12 \times 10^{-4} = 0.000912$

 $---9.12 \times 10^{-4} = 0.000912$

Move the decimal point 4 places to the left.

Step 1. Multiply the First terms.		
Step 2. Multiply the Outer terms.	$\begin{array}{c} \text{first} & \text{last} & \text{first} & \text{last} \\ (a + b)(c + d) \end{array}$	Say it as you multiply!
Step 3. Multiply the Inner terms.	outer	FOIL First
Step 4. Multiply the <i>Last</i> terms.		Outer Inner
Step 5. Combine like terms, when possible.		Last

23 ×46		
138 92	partial product partial product	Start by multiplying 23 by 6 to get 138. Next, multiply 23 by 4, lining up the partial product in the correct columns.
1058	product	Last you add the partial products.

- $(x+9)^2$ $(y-7)^2$ $(2x+3)^2$
- (x+9)(x+9) (y-7)(y-7) (2x+3)(2x+3)
- $x^{2} + 9x + 9x + 81$ $y^{2} 7y 7y + 49$ $4x^{2} + 6x + 6x + 9$
 - $x^{2} + 18x + 81$ $y^{2} 14y + 49$ $4x^{2} + 12x + 9$

$$(a + b)^{2} = a^{2} + 2ab + b^{2}$$

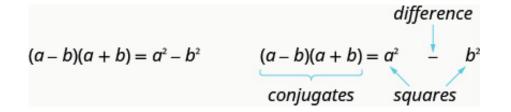
$$(a + b)^{2} = a^{2} + 2ab + b^{2}$$

$$(binomial)^{2} \quad (first term)^{2} \quad 2(product of terms) \quad (last term)^{2}$$

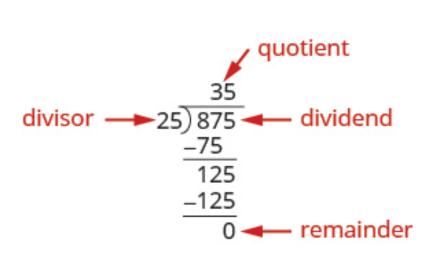
$$(a - b)^{2} = a^{2} - 2ab + b^{2}$$

$$(a - b)^{2} = a^{2} - 2ab + b^{2}$$

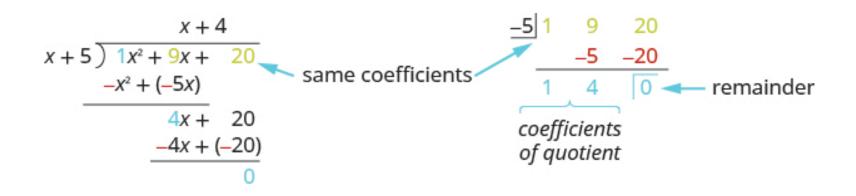
$$(binomial)^{2} \quad (first term)^{2} \quad 2(product of terms) \quad (last term)^{2}$$



$$(x + 9)(x - 9) \qquad (y - 8)(y + 8) \qquad (2x - 5)(2x + 5)$$


$$x^{2} - 9x + 9x - 81 \qquad y^{2} + 8y - 8y - 64 \qquad 4x^{2} + 10x - 10x - 25$$

$$x^{2} - 81 \qquad y^{2} - 64 \qquad 4x^{2} - 25$$



This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax, Rice University and any changes must be noted.